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1

Let S be a nonempty set and define .# to be the space of all bounded, real-
valued functions on S. For ge .#, define || g| = sup {| g(x)| : xeS}. If V'is
any finite-dimensional subspace, then every f'e .# has a best approximation
from V in the above norm. This is well known and easy to prove using a
compactness argument [2]. The purpose of this paper is to develop an exis-
tence theory for approximation by reciprocals of functions in such a space V.
While the complete generality of the above result is not achievable, existence
can be demonstrated under relatively weak assumptions on f, S, and V. In
particular, S need not be topologized. The arguments used are in part similar
to arguments in the literature (see, for example, [1] or [3]).

In the last section we obtain two resuits in more specialized settings. The
first is an extension of a known result and the second is a known result with a
new and far shorter proof.

2

Let % be a collection of subsets of S, closed under finite intersections. Call
w: % — [0, oo] a zero monotone measure (zm-measure) if 4, Be €, u(B) =
0, and A C B implies u(A4) = 0. Whenever we write u(A4) it will be implicitly
understood that 4 is in the domain of p.

DEerINITION. A function fe.# will be called sup measure continuous
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{sm-continuous) with respect to w if there is a sequence of subsets of S,
{B;>7, such that for some zm-measure .,

() wB) =0 for all j,
(2) x; € B; forj =1, 2,.., implies | f(x;) — f1 .
We then write f'e .#(u).

DErRINITION.  Let V be a subspace of . that is finite dimensional, contains
the constant functions, and has the property that u{x € S : p(x) = 0} == 0 for
all pe V, p == 0, for some zm-measure u. Then we say V' is compatible with
respect to p. Also define V¥ == {1/p: pe V, p(x) > Ofor all xe S}.

Lemma.  Let {p,> be a sequence of functions in a space V C . that is
compatible with respect to some zm-measure u and such that || p, || — oo, Then
there is a subsequence {py», such that | pp(x)! — oo for all x € S\Z, where
Z has y(Z) = 0.

Proof. Define | p, |l = M, and assume without loss of generality that
M, 0 for all k. Define g, = p,/M, for all k so ||g,! =1 and g, € V.
{qy> is a bounded sequence in a finite-dimensional space, so there is a subse-
quence <{q;;), that converges to g* € V. Clearly || g* |l = 1 so ¢* = 0. Let
y e S with g*(y) # 0. (Note that we are taking Z = ¢*-1(0).) We must show
that | pry(y)) = . Let N >0 be given and choose I large enough to
guarantee that | g.) — ¢*| <| g*(»)l/2and § | ¢*(»)i - My > Nfori = I
For such 7, | gu(») — (W <1 g*(»)|/2 implying | qe(¥)] > | ¢*( )]
and | pro (1) = Myl gD > | ¥ (D12 - My > N.

THEOREM 1. Let fe #(u) and let V C M be compatible with respect to the
same zm-measure p. Define z* = sup{f(x): x e S} + inf{f(x): x € S}].
Then f has a best uniform approximation from V* if z* > 0. If the functions of
V* are each bounded away from zero, then the converse is also true.

Proof. Suppose z* >> 0 and let {p,> be a sequence from }'* such that
W= 1pili—p=inf{llf— lpll:peV,p >0

Then there is an M > 0 such that || p, || << M. Indeed, suppose not. Without
loss of generality we may assume || p, || — oo. Let L >> 0 be an integer for
which | f(x)] > | fI' — z*/3 if x € B, , where B, is as given in the definition
of sm-continuous. Since u(B;) >> 0 we may use the lemma to show there is a
y € By for which | f(»)! > | f|| — z*/3 and such that a subsequence of {p,”,
denoted by {pu;;> can be found with | py»( )| — co. Then for sufficiently

large 4, 1/] pry(»)l < 2*/3 and | f(y) — 1/(pe(¥)] = p - 2%/3, since con-
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sideration of z* = 1/(1/z*) shows that p <! f| — z*. Therefore !|f -~
(I/pe)ll > p + (2*/3) for sufficiently large 7, contradicting the definition of
p. Now there is a y > 0, v << M such that for p,(x) <y, Y(pu(x) = fIl +
p+1LLetQ={peV:|pl<Mland T ={pe V:p(x) =y for all xeS}.
Let W= {1/p:pe QN T} Clearly a best approximation to f from W is a
best approximation to ffrom V* . But a best approximation to f from Wisa
function from the compact set Q@ N T that minimizes the continuous func-
tional G(p) = || f — 1/p || and must therefore exist.

If z* < 0 and if functions of ¥* are bounded away from 0, consider the
sequence {1/k> for which || f — 1/k || — p. Clearly there is no best approxima-
tion, and the converse of the theorem is true as well.

COROLLARY 1. Let f be a function defined and bounded on S with the
property that there is a sequence of distinct elements x; € S such that | f(x;)| —
1Sl . Suppose the elements of V' have at most a finite number of zeros or else
vanish identically (e.g., algebraic polynomials). If z* > 0, then f has a best
uniform approximation from V¥ .

Proof. Define u(A) = 0 if A4 is finite and p(4) = 1 if 4 is infinite. Define
{B;y in the obvious fashion and apply Theorem 1.

COROLLARY 2. Let f be a continuous function defined on [a, b], a compact
interval of real numbers. Suppose V is such that pe V, p = 0 implies [a, b]\
p7X0) is dense in [a, b). (This is called the dense nonzero property in [4].) If
z* > 0, then f has a best uniform approximation from V* . (A generalization
of this result is given in [4].)

Proof. Define u(4) = 0 if the complement of 4 is dense in [a, b] and
define u(A4) = 1 otherwise. Define (B,> by B; = {xc[a, b): f(x) = ||f| —
(1/)}. Then u(B;) = 1 for all j. Apply Theorem 1.

CoOROLLARY 3. Let f be continuous and bounded on (— 0, ). Then if V is
the space of trigonometric polynomials of degree <n, defined on (— o0, ),
then f has a best uniform approximation from V* if z* > 0.

Proof. Define u(4) = 0 if 4 is countable or finite, and define p(4) = 1
otherwise. Observe that all trigonometric polynomials have at most a coun-
table number of zeros on (—o0, 00) or vanish identically. Define B; =
{x € (— o0, o0): f(x) =1 fIl — 1/j}. Since fis continuous, u(B;) == 1 for all ;.
Apply Theorem 1.

COROLLARY 4. Let f be defined on the compact interval [a, b). Partition
[a, b] into two Lebesgue measurable sets U, and U, , with v(U;) > 0 where v
represents Lebesgue measure. Define u(A) = 0 if wW(U; N A) = 0 and define
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w(A) = 1 otherwise. Then if fe #(u) and V is compatible with respect to u,
then f has a best uniform approximation from V* if z* = 0.

Proof. Immediate.

Remark. The above corollaries are examples of a large variety of state-
ments that can be made as a consequence of Theorem 1. Note that the use of
zero monotone measures is essentially a convenience.

3

In this section we prove two results that do not follow immediately from
the general theory. Theorem 2 is given for positive functions in [1]. Theorem 3
1s given in [3].

THEOREM 2. Let f be a continuous real-valued function, defined and
bounded on [a, ©0), where a is any real number. Suppose z* > 0. If V = II,, ,
the polynomials of degree n or less, then f has a best uniform approximation
Srom V.

Proof. Let {p,> be a minimizing sequence, i.e., | f — 1/p.| - p. We may
assume that for x > K, K sufficiently large that f(x) <! f|' — € for some
e > 0. Indeed, if such a K cannot be found, the minimizing sequence must
eventually consist of constants, since otherwise {l/p,> has a subsequence
that converges to zero for arbitrarily large x, implying p = I f!l which is
impossible since z* > 0. We may then deduce that the function in V*
identically equal to z* is the best approximation. Now suppose {| p, > is
an unbounded sequence, where || - ||| is the sup norm on [e, K]. Assume
without loss of generality that || p, || — co. Then by the lemma, p,(x) — 0
except for a finite number of x in [a, K]. If u is defined by u(4) = 0 if 4 is
finite and u(A4) == 1 otherwise, we see that a sequence (B, of sets in [a, K] can
be found such that u(B;) = 1 and the B,’s satisfy the conditions for the sm-
continuity of f restricted to [a, K]. We are then led to a contradiction as in
Theorem 1. Clearly p,(x) = y for all x in [a, K] and some y > 0. We may
therefore deduce that a subsequence of {p,>, {pr») >, converges uniformly to
a function g € V, with ¢ > 0 on [a, K]. Now || f — lpuy || < | f~-
1/pr» || — p. Therefore by continuity, || f— 1/qi| < p, ie., sup{ f(x) -
I/g(x)| : xefa, K]} < p. If I is an interval, [a, K]CIC [a, «c), we may
deduce that p,;; — g uniformly on [ since the dimension of I1, is n -- 1 on
any nontrivial interval., Therefore sup{|f(x) -- 1/g(x) : xe[l} = p. Hence
“f—1/g| = p and 1/g is a best approximation.

THEOREM 3. Let X CR be compact, with card X =zn — 2 and let f:
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X — R be continuous and positive on X. Then there is a p*ell,,p* >0
such that

[ f— Up*li=inf{lf— l/pli:pell,,p > 0onX}.

Proof. Let <{l/p;> be a minimizing sequence so that [[f— 1/p.|| — p,
prell, , p. > 0 for all k. By referring to the proof of Theorem 1, it is clear
that existence will be established if we can show (| p, |> is a bounded
sequence. Suppose not, and without loss of generality assume | p;, || — 0.
Define gell,, g > 0,llgqll = 1 as in Theorem . Let J = {xy, X5 ,..., Xz},
k < nrepresent the zeros of ¢ in X. (Initially, this set could be empty, but the
proof that follows is still valid in this case.) Let m = sup{f(x) : x ¢ J}. Since
card X 2= n — 2, m is well defined and positive. Let J; = {x € X: f(x) > m}
and J, = J'J, . Clearly J; C J and every point in J, is an isolated point of X.
Indeed were xeJ, not isolated, continuity yields an infinite number of
elements in J;, a finite set. Assume without loss of generality that J, =
{x1, X9 500, Xpb and Jy = {x, 4, X509 ..., Xz} By the argument of Theorem 1,
p = m since 1/p,(x) — 0 for x ¢ J. Let r be a polynomial in IT, , not neces-
sarily positive, such that

1

) oy =) i=12.p
and
(alﬂ):% i=p+1Lp+2.,k

We may choose L >0 so large that r(x) + Lg(x) > 0 for x e X. Define
d/re> by rx) == r(x) + kLg(x). Clearly ri(x) >0 for xe X, k=1, 2,...,.
Note that r, € [T, . Now choose 8 > 0 sufficiently small so that x  (x; — 8,
x; + 8) = D;implies | 1/(r(x)) — 1/(r(x)) < mfdfori=p -+ 1,p+ 2,., k.
Then for x e D; N X,

1 1 1 m _ 3m

r(x) +~ kLq(x) = r(x) = r(x;) + 4 4

Yet F= X\((ULD+1 D;)Y v J)). Since all the points in J; are isolated, F is
compact and {1/r;> converges monotonically and pointwise to zero on F. By
Dini’s theorem the convergence is uniform so for a k sufficiently large we have

D ;kz—x)*:f(x) it xeJ;,

1 3m . -
— <2 e
2) S 4 if x=F,
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3)
@ —— = on X for some sufficiently small € > 0.

Then | 1/r, — f| <<m, contradicting the observation that p > m. Hence
i pr1> is bounded and existence is shown as in theorem 1.
We note that the condition f > 0 on X cannot be removed (see [5, p. 130]).
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