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1

Let S be a nonempty set and define .,It to be the space of all bounded, real­
valued functions on S. For g EO .,It, define II g II = sup {I g(x) I : x EO S}. If V is
any finite-dimensional subspace, then every f EO .,It has a best approximation
from V in the above norm. This is well known and easy to prove using a
compactness argument [2]. The purpose of this paper is to develop an exis­
tence theory for approximation by reciprocals of functions in such a space V.
While the complete generality of the above result is not achievable, existence
can be demonstrated under relatively weak assumptions on f, S, and V. In
particular, S need not be topologized. The arguments used are in part similar
to arguments in the literature (see, for example, [1] or [3]).

In the last section we obtain two results in more specialized settings. The
first is an extension of a known result and the second is a known result with a
new and far shorter proof.

2

Let 'fl be a collection of subsets of S, closed under finite intersections. Call
J1' : 'fl -->- [0, Cf)] a zero monotone measure (zm-measure) if A, B EO 'fl, J1'(B) =
0, and A C B implies J1'(A) = 0. Whenever we write fL(A) it will be implicitly
understood that A is in the domain of fL.

DEFINITION. A function f EO j{ will be called sup measure continuous
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(sm-continuous) with respect to fL jf there is a sequence of subsets of S,
<Bj);:l such that for some zm-measure fL,

(I) fL(BJ > 0

(2) Xj E Bj

for all j,

forj = 1,2,... , implies if(xJ-. fl .

We then writefE Jt(fL).

DEFINITION. Let V be a subspace of Jt that is finite dimensional, contains
the constant functions, and has the property that fL{x E S : p(x) = 0] == 0 for
all p E V, P ~ 0, for some zm-measure fL. Then we say V is compatible with
respect to fL. Also define V; ,-= {]Ip: p E V, p(x) > 0 for all XES}.

LEMMA. Let <h) be a sequence of functions in a space V C Jt that is
compatible with respect to some zm-measure fL and such that II Pk I ---+ 00. Then
there is a subsequence <PkW) such that I pk(;)(x)i ---+ 00 for all x E S\Z, where
Z has fL(Z) = O.

Proof Define Ih II = M k and assume without loss of generality that
M k =F- 0 for all k. Define qk = h/Mk for all k so !I qk = I and qk E V.
<qk) is a bounded sequence in a finite-dimensional space, so there is a subse­
quence <qk(i» that converges to q* E V. Clearly II q* II = I so q* ~ O. Let
yES with q*(y) =F- O. (Note that we are taking Z = q*-l(O).) We must show
that ih(i)(Y)1 ---+ 00. Let N> 0 be given and choose I large enough to
guarantee that I qkW - q* I < ! q*(y)I/2 and 1: q*(Y)i . Mk(i) > N for i ;:c: I.
For such i, I q/C(i)(Y) - q*(Y)1 < ! q*(Y)1/2 implying ] q/C(i)(Y)] > 1" q*(Y)1
and I hW(Y)] =c Mk(i)1 q/c(i)(Y) I > I q*(Y)I/2 . M/C(i) > N.

THEOREM 1. LetfE Jt(fL) and let V C Jt be compatible with respect to the
same zm-measure fL. Define z* = t[sup{j(x): XES} + inf{j(x): XES}].
Then f has a best uniform approximation from vt if z* > o. If the functions of
vt are each bounded away from zero, then the converse is also true.

Proof Suppose z* > 0 and let <h) be a sequence from V* such that

iif - ]/h I, ---+ p == inf{I!! - lip !I: p E V, P > O}.

Then there is an M > 0 such that II Pk < M. Indeed, suppose not. Without
loss of generality we may assume II h II ---+ 00. Let L > 0 be an integer for
which i f(x)] > fl' - z*/3 if x E BL , where BL is as given in the definition
of sm-continuous. Since fL(BL ) > 0 we may use the lemma to show there is a
Y E BL for which If(y)] > fll -~ z*/3 and such that a subsequence of <h,
denoted by <h(i» can be found with Ihw(y)1 ---+ 00. Then for sufficiently
large i, ]/] h(;)(y)1 < z*/3 and I fey) - ]/(h(i)(y))1 :::> p -+ z*/3, since con-
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sideration of z* ,= I/(1/z*) shows that p ~ ilfll - z*. Therefore Ilf­
(1/h(i»11 > p + (z*/3) for sufficiently large i, contradicting the definition of
p. Now there is a y > 0, Y < M such that for pix) < y, I/(Pk(x» ?: Ilfll +
p + 1. Let Q = {p E V: II p II ~ M} and T = {p E V: p(x) ~ y for all XES}.
Let W = {I/p : p E Q (\ n. Clearly a best approximation to f from W is a
best approximation to ffrom vt. But a best approximation to ffrom W is a
function from the compact set Q (\ T that minimizes the continuous func­
tional G(p) = Ilf -- I/p II and must therefore exist.

If z* ~ °and if functions of V! are bounded away from 0, consider the
sequence (I/k) for which Ilf - Ilk 11- p. Clearly there is no best approxima­
tion, and the converse of the theorem is true as well.

COROLLARY I. Let f be a function defined and bounded on S with the
property that there is a sequence ofdistinct elements Xi E S such that I f(x;) I ­
II fll . Suppose the elements of V have at most a finite number of zeros or else
vanish identically (e.g., algebraic polynomials). If z* > 0, then f has a best
uniform approximation from V! .

Proof Define fL(A) = °if A is finite and fL(A) = 1 if A is infinite. Define
(Bj ) in the obvious fashion and apply Theorem 1.

COROLLARY 2. Let f be a continuous function defined on [a, b], a compact
interval of real numbers. Suppose V is such that p E V, p =1= °implies [a, b]\
rl(O) is dense in [a, b]. (This is called the dense nonzero property in [4].) If
z* > 0, then f has a best uniform approximation from V!. (A generalization
of this result is given in [4].)

Proof Define fL(A) = °if the complement of A is dense in [a, b] and
define fL(A) = 1 otherwise. Define (Bj ) by B j = {x E [a, b] : f(x) ~ II fl ­
(II})}. Then fL(Bj ) =, 1 for all}. Apply Theorem 1.

COROLLARY 3. Let f be continuous and bounded on (- 00, (0). Then if V is
the space of trigonometric polynomials of degree ~n, defined on (- 00, (0),
thenfhas a best uniform approximation from V! ifz* > 0.

Proof Define fL(A) = °if A is countable or finite, and define fL(A) = 1
otherwise. Observe that all trigonometric polynomials have at most a coun­
table number of zeros on (- 00, (0) or vanish identically. Define B j =

{x E (- 00, (0): f(x) ~ Ilfli - Iii}. Since f is continuous, fL(Bj ) = 1 for all j.
Apply Theorem 1.

COROLLARY 4. Let f be defined on the compact interval [a, b]. Partition
[a, b] into two Lebesgue measurable sets VI and V 2 , with v(VI ) > °where v
represents Lebesgue measure. Define fL(A) = °if v( VI (\ A) == °and define
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{-teA) 1 otherwise. Then ifIE jf({-t) and V is compatible with respect to {-t,

then I has a best uniform approximation Irom V~ ifz*~> O.

Proof Immediate.

Remark. The above corollaries are examples of a large variety of state­
ments that can be made as a consequence of Theorem 1. Note that the use of
zero monotone measures is essentially a convenience.

3

In this section we prove two results that do not follow immediately from
the general theory. Theorem 2 is given for positive functions in [I]. Theorem 3
is given in [3].

THEOREM 2. Let I be a continuous real-valued lunction, defined and
bounded on la, co), where a is any real number. Suppose z* > O. If V = lln ,
the polynomials 01 degree n or less, then I has a best uniform approximation
Irom vt.

Proof Let <Pk) be a minimizing sequence, i.e., if - l/Pk I! -+ p. We may
assume that for x ;?: K, K sufficiently large that f(x) :'( '111 1

- to for some
to > O. Indeed, if such a K cannot be found, the minimizing sequence must
eventually consist of constants, since otherwise <I/Pk) has a subsequence
that converges to zero for arbitrarily large x, implying p;?: III which is
impossible since z* > O. We may then deduce that the function in vt
identically equal to z* is the best approximation. Now suppose Pk is
an unbounded sequence, where III . III is the sup norm on [a, K]. Assume
without loss of generality that 1:1 Pk 1.1 -+ co. Then by the lemma, Pk(X) -+ 0
except for a finite number of x in [a, K]. If {-t is defined by {-teA) = 0 if A is
finite and {-teA) =, 1 otherwise, we see that a sequence (Bj ) of sets in [a, K] can
be found such that {-t(B j ) = 1 and the B/s satisfy the conditions for the sm­
continuity of I restricted to [a, K]. We are then led to a contradiction as in
Theorem I. Clearly Pk(X) y for all x in la, K] and some y > O. We may
therefore deduce that a subsequence of (Pk), (Pk(;), converges uniformly to
a function q E V, with q > 0 on [a, K]. Now III I - l/Pk(i) :-( i 1-­
l/Pk(;) 11-+ p. Therefore by continuity, il11 - l/q :'( p, i.e., sup{i f(x) -­
l/q(x)[ : x EO [a, K]} :'( p. If / is an interval, la, K] C / C la, CO), we may
deduce that Pk(;) -+ q uniformly on / since the dimension of lln is n -'- 1 on
any nontrivial interval. Therefore supfj f(x) l/q(x) : x E r: p. Hence
f - I/q I = p and l/q is a best approximation.

THEOREM 3. Let XC IR be compact, with card X)c n - 2 and let f:
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x -+ IR be continuous and positive on X. Then there is a p* E IIn , p* > 0
such that

1 - l/p* Ii = inf{111 - lip I: : p E IIn ,p > 0 on X}.

Proof Let <I/Pk> be a minimizing sequence so that U - I/Pk II -+ p,
Pk E IIn ,PI. > 0 for all k. By referring to the proof of Theorem I, it is clear
that existence will be established if we can show <II Pk II> is a bounded
sequence. Suppose not, and without loss of generality assume II Pk Ii -+ w.
Define q E IIn , q .~ 0, II q II = I as in Theorem 1. Let J = {Xl' X2 ,... , Xk},
k ~ n represent the zeros of q in X. (Initially, this set could be empty, but the
proof that follows is still valid in this case.) Let m = sup{f(x) : X 1= J}. Since
card X ;;: n --:- 2, m is well defined and positive. Let J1 = {x E X: f(x) > m}
and J2 = 1J1 . Clearly J1 C J and every point in J1 is an isolated point of X.
Indeed were x E J1 not isolated, continuity yields an infinite number of
elements in J1 , a finite set. Assume without loss of generality that J1 =

{Xl' X2,..., x p } and J2 = {xP+l, Xp+2 ,..., Xk}' By the argument of Theorem 1,
p ;;: m since l/Pk(x) -+ 0 for x rf: J. Let r be a polynomial in IIn , not neces­
sarily positive, such that

(I) 1 (
rex;) =1 Xi)

and

(2)
1 Tn

rex;) 2

i = 1,2,... , P

i = p + I, P + 2, ... , k.

We may choose L > 0 so large that rex) + Lq(x) > 0 for x E X. Define
<Ih> by rl.(x) = rex) + kLq(x). Clearly rk(x) > 0 for x E X, k = 1,2,...,.
Note that rl. E IIn . Now choose 8 > 0 sufficiently small so that x E (Xi - 8,
Xi + 0) ....~ D i implies I I/(r(x» -- I/(r(xi»i ~ m/4 for i = p + I, p + 2, ... , k.
Then for x E D i (\ X,

____;_~-I~____;_7":<:: _1_ :<:: ~_ + ~ _ 3n~
rex) --1-- kLq(x)'~ rex) ~ r(xi) 4 - 4 .

Let F = X\«U~~P+1 Di ) u J1). Since all the points in J1 are isolated, F is
compact and <Ilrk ) converges monotonically and pointwise to zero on F. By
Dini's theorem the convergence is uniform so for a k sufficiently large we have

(I)
I

-() =/(x)rk x
if .Y E J1 ,

I <' 3m
(2) rk(x) ~ 4 if x EF,
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(3)

(4)

1 _3/11
--- ~-­
r,.,ex) ~~ 4
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f,

if x EO U D i ,

i" {I--t 1

on X for some sufficiently small E > O.

Then I! l/rk - f! < m, contradicting the observation that p m. Hence
<!I h D is bounded and existence is shown as in theorem 1.

We note that the conditionf > 0 on X cannot be removed (see [5, p. 130)).
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