Existence of Best Uniform Approximations by Reciprocals*

L. KEENER^{†,‡}

Department of Mathematics, Dalhousie University Halifax, Nova Scotia, Canada

Communicated by E. W. Cheney

Received March 24, 1977

1

Let S be a nonempty set and define \mathcal{M} to be the space of all bounded, realvalued functions on S. For $g \in \mathcal{M}$, define $||g|| = \sup \{|g(x)| : x \in S\}$. If V is any finite-dimensional subspace, then every $f \in \mathcal{M}$ has a best approximation from V in the above norm. This is well known and easy to prove using a compactness argument [2]. The purpose of this paper is to develop an existence theory for approximation by reciprocals of functions in such a space V. While the complete generality of the above result is not achievable, existence can be demonstrated under relatively weak assumptions on f, S, and V. In particular, S need not be topologized. The arguments used are in part similar to arguments in the literature (see, for example, [1] or [3]).

In the last section we obtain two results in more specialized settings. The first is an extension of a known result and the second is a known result with a new and far shorter proof.

2

Let \mathscr{C} be a collection of subsets of *S*, closed under finite intersections. Call $\mu : \mathscr{C} \to [0, \infty]$ a zero monotone measure (zm-measure) if *A*, $B \in \mathscr{C}$, $\mu(B) = 0$, and $A \subset B$ implies $\mu(A) = 0$. Whenever we write $\mu(A)$ it will be implicitly understood that *A* is in the domain of μ .

DEFINITION. A function $f \in \mathcal{M}$ will be called sup measure continuous

* Supported by National Research Council Grant A8755.

⁺ The author is thankful to the referee for his helpful suggestions.

[‡] Present address: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

(sm-continuous) with respect to μ if there is a sequence of subsets of S, $\langle B_j \rangle_{j=1}^{\infty}$ such that for some zm-measure μ ,

(1)
$$\mu(\boldsymbol{B}_j) > 0$$
 for all j ,

(2) $x_j \in B_j$ for $j = 1, 2, ..., \text{ implies } |f(x_j)| \rightarrow |f|$.

We then write $f \in \mathcal{M}(\mu)$.

DEFINITION. Let V be a subspace of \mathscr{M} that is finite dimensional, contains the constant functions, and has the property that $\mu\{x \in S : p(x) = 0\} = 0$ for all $p \in V$, $p \neq 0$, for some zm-measure μ . Then we say V is compatible with respect to μ . Also define $V_+^* = \{1/p : p \in V, p(x) > 0 \text{ for all } x \in S\}$.

LEMMA. Let $\langle p_k \rangle$ be a sequence of functions in a space $V \subset \mathcal{M}$ that is compatible with respect to some zm-measure μ and such that $|| p_k || \to \infty$. Then there is a subsequence $\langle p_{k(i)} \rangle$ such that $|| p_{k(i)}(x)| \to \infty$ for all $x \in S \setminus Z$, where Z has $\mu(Z) = 0$.

Proof. Define $||p_k|| = M_k$ and assume without loss of generality that $M_k \neq 0$ for all k. Define $q_k = p_k/M_k$ for all k so $||q_k|| = 1$ and $q_k \in V$. $\langle q_k \rangle$ is a bounded sequence in a finite-dimensional space, so there is a subsequence $\langle q_{k(i)} \rangle$ that converges to $q^* \in V$. Clearly $||q^*|| = 1$ so $q^* \neq 0$. Let $y \in S$ with $q^*(y) \neq 0$. (Note that we are taking $Z = q^{*-1}(0)$.) We must show that $|p_{k(i)}(y)| \rightarrow \infty$. Let N > 0 be given and choose I large enough to guarantee that $||q_{k(i)} - q^*|| < ||q^*(y)|/2$ and $\frac{1}{2} ||q^*(y)| \cdot M_{k(i)} > N$ for $i \ge I$. For such $i, ||q_{k(i)}(y)| - q^*(y)| < ||q^*(y)|/2$ implying $||q_{k(i)}(y)| > \frac{1}{2} ||q^*(y)|$ and $||p_{k(i)}(y)| = M_{k(i)} ||q_{k(i)}(y)| > ||q^*(y)|/2 \cdot M_{k(i)} > N$.

THEOREM 1. Let $f \in \mathcal{M}(\mu)$ and let $V \subset \mathcal{M}$ be compatible with respect to the same zm-measure μ . Define $z^* = \frac{1}{2}[\sup\{f(x): x \in S\} + \inf\{f(x): x \in S\}]$. Then f has a best uniform approximation from V_+^* if $z^* > 0$. If the functions of V_+^* are each bounded away from zero, then the converse is also true.

Proof. Suppose $z^* > 0$ and let $\langle p_k \rangle$ be a sequence from V^* such that

$$||f - 1/p_k|| \to \rho = \inf\{||f - 1/p||: p \in V, p > 0\}.$$

Then there is an M > 0 such that $||p_k|| < M$. Indeed, suppose not. Without loss of generality we may assume $||p_k|| \to \infty$. Let L > 0 be an integer for which $||f(x)| > ||f|| - z^*/3$ if $x \in B_L$, where B_L is as given in the definition of sm-continuous. Since $\mu(B_L) > 0$ we may use the lemma to show there is a $y \in B_L$ for which $||f(y)| > ||f|| - z^*/3$ and such that a subsequence of $\langle p_k \rangle$, denoted by $\langle p_{k(i)} \rangle$ can be found with $||p_{k(i)}(y)| \to \infty$. Then for sufficiently large i, $1/||p_{k(i)}(y)| < z^*/3$ and $||f(y) - 1/(p_{k(i)}(y))| > \rho + z^*/3$, since consideration of $z^* = 1/(1/z^*)$ shows that $\rho \leq ||f|| - z^*$. Therefore $||f - (1/p_{k(i)})|| > \rho + (z^*/3)$ for sufficiently large *i*, contradicting the definition of ρ . Now there is a $\gamma > 0$, $\gamma < M$ such that for $p_k(x) < \gamma$, $1/(p_k(x)) \geq ||f|| + \rho + 1$. Let $Q = \{p \in V : ||p|| \leq M\}$ and $T = \{p \in V : p(x) \geq \gamma$ for all $x \in S\}$. Let $W = \{1/p : p \in Q \cap T\}$. Clearly a best approximation to *f* from *W* is a best approximation to *f* from *V*^{*}₊. But a best approximation to *f* from *W* is a function from the compact set $Q \cap T$ that minimizes the continuous functional G(p) = ||f - 1/p|| and must therefore exist.

If $z^* \leq 0$ and if functions of V_+^* are bounded away from 0, consider the sequence $\langle 1/k \rangle$ for which $||f - 1/k|| \rightarrow \rho$. Clearly there is no best approximation, and the converse of the theorem is true as well.

COROLLARY 1. Let f be a function defined and bounded on S with the property that there is a sequence of distinct elements $x_i \in S$ such that $|f(x_i)| \rightarrow ||f||$. Suppose the elements of V have at most a finite number of zeros or else vanish identically (e.g., algebraic polynomials). If $z^* > 0$, then f has a best uniform approximation from V_+^* .

Proof. Define $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if A is infinite. Define $\langle B_j \rangle$ in the obvious fashion and apply Theorem 1.

COROLLARY 2. Let f be a continuous function defined on [a, b], a compact interval of real numbers. Suppose V is such that $p \in V$, $p \not\equiv 0$ implies $[a, b] \setminus p^{-1}(0)$ is dense in [a, b]. (This is called the dense nonzero property in [4].) If $z^* > 0$, then f has a best uniform approximation from V_+^* . (A generalization of this result is given in [4].)

Proof. Define $\mu(A) = 0$ if the complement of A is dense in [a, b] and define $\mu(A) = 1$ otherwise. Define $\langle B_j \rangle$ by $B_j = \{x \in [a, b] : f(x) \ge ||f|| - (1/j)\}$. Then $\mu(B_j) = 1$ for all j. Apply Theorem 1.

COROLLARY 3. Let f be continuous and bounded on $(-\infty, \infty)$. Then if V is the space of trigonometric polynomials of degree $\leq n$, defined on $(-\infty, \infty)$, then f has a best uniform approximation from V_{+}^{*} if $z^{*} > 0$.

Proof. Define $\mu(A) = 0$ if A is countable or finite, and define $\mu(A) = 1$ otherwise. Observe that all trigonometric polynomials have at most a countable number of zeros on $(-\infty, \infty)$ or vanish identically. Define $B_j = \{x \in (-\infty, \infty): f(x) \ge ||f|| - 1/j\}$. Since f is continuous, $\mu(B_j) = 1$ for all j. Apply Theorem 1.

COROLLARY 4. Let f be defined on the compact interval [a, b]. Partition [a, b] into two Lebesgue measurable sets U_1 and U_2 , with $v(U_1) > 0$ where v represents Lebesgue measure. Define $\mu(A) = 0$ if $v(U_1 \cap A) = 0$ and define

I.. KEENER

 $\mu(A) = 1$ otherwise. Then if $f \in \mathcal{M}(\mu)$ and V is compatible with respect to μ , then f has a best uniform approximation from V_{-}^{*} if $z^{*} > 0$.

Proof. Immediate.

Remark. The above corollaries are examples of a large variety of statements that can be made as a consequence of Theorem 1. Note that the use of zero monotone measures is essentially a convenience.

3

In this section we prove two results that do not follow immediately from the general theory. Theorem 2 is given for positive functions in [1]. Theorem 3 is given in [3].

THEOREM 2. Let f be a continuous real-valued function, defined and bounded on $[a, \infty)$, where a is any real number. Suppose $z^* > 0$. If $V = \Pi_n$, the polynomials of degree n or less, then f has a best uniform approximation from V_*^* .

Proof. Let $\langle p_k \rangle$ be a minimizing sequence, i.e., $||f - 1/p_k|| \rightarrow \rho$. We may assume that for $x \ge K$, K sufficiently large that $f(x) \le ||f|| - \epsilon$ for some $\epsilon > 0$. Indeed, if such a K cannot be found, the minimizing sequence must eventually consist of constants, since otherwise $\langle 1/p_k \rangle$ has a subsequence that converges to zero for arbitrarily large x, implying $\rho \ge ||f||$ which is impossible since $z^* > 0$. We may then deduce that the function in V_{\pm}^* identically equal to z^* is the best approximation. Now suppose $\langle || p_k || \rangle$ is an unbounded sequence, where $\|\cdot\|$ is the sup norm on [a, K]. Assume without loss of generality that $||p_k|| \to \infty$. Then by the lemma, $p_k(x) \to 0$ except for a finite number of x in [a, K]. If μ is defined by $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ otherwise, we see that a sequence $\langle B_i \rangle$ of sets in [a, K] can be found such that $\mu(B_i) = 1$ and the B_i 's satisfy the conditions for the smcontinuity of f restricted to [a, K]. We are then led to a contradiction as in Theorem 1. Clearly $p_k(x) \ge \gamma$ for all x in [a, K] and some $\gamma > 0$. We may therefore deduce that a subsequence of $\langle p_k \rangle$, $\langle p_{k(i)} \rangle$, converges uniformly to a function $q \in V$, with q > 0 on [a, K]. Now $||| f - 1/p_{k(i)} || \leq || f - 1/p_{k(i)}||$ $1/p_{k(i)} \parallel \rightarrow \rho$. Therefore by continuity, $\parallel f - 1/q \parallel \leq \rho$, i.e., $\sup\{\mid f(x) \rightarrow \rho \mid x \in I\}$ $1/q(x)|: x \in [a, K] \leq \rho$. If I is an interval, $[a, K] \subseteq I \subseteq [a, \infty)$, we may deduce that $p_{k(i)} \rightarrow q$ uniformly on I since the dimension of Π_n is n + 1 on any nontrivial interval. Therefore $\sup\{|f(x) - 1/q(x)| : x \in I\} \leq \rho$. Hence $||f-1/q|| = \rho$ and 1/q is a best approximation.

THEOREM 3. Let $X \subseteq \mathbb{R}$ be compact, with card $X \ge n+2$ and let f:

 $X \to \mathbb{R}$ be continuous and positive on X. Then there is a $p^* \in \Pi_n$, $p^* > 0$ such that

$$||f - 1/p^*|| = \inf\{||f - 1/p|| : p \in \Pi_n, p > 0 \text{ on } X\}.$$

Proof. Let $\langle 1/p_k \rangle$ be a minimizing sequence so that $||f - 1/p_k|| \to \rho$, $p_k \in \Pi_n$, $p_k > 0$ for all k. By referring to the proof of Theorem 1, it is clear that existence will be established if we can show $\langle || p_k || \rangle$ is a bounded sequence. Suppose not, and without loss of generality assume $|| p_k || \to \infty$. Define $q \in \Pi_n$, $q \ge 0$, || q || = 1 as in Theorem 1. Let $J = \{x_1, x_2, ..., x_k\}$, $k \le n$ represent the zeros of q in X. (Initially, this set could be empty, but the proof that follows is still valid in this case.) Let $m = \sup\{f(x) : x \notin J\}$. Since card $X \ge n + 2$, m is well defined and positive. Let $J_1 = \{x \in X: f(x) > m\}$ and $J_2 = J \setminus J_1$. Clearly $J_1 \subset J$ and every point in J_1 is an isolated point of X. Indeed were $x \in J_1$ not isolated, continuity yields an infinite number of elements in J_1 , a finite set. Assume without loss of generality that $J_1 = \{x_1, x_2, ..., x_p\}$ and $J_2 = \{x_{p+1}, x_{p+2}, ..., x_k\}$. By the argument of Theorem 1, $\rho \ge m$ since $1/p_k(x) \to 0$ for $x \notin J$. Let r be a polynomial in Π_n , not necessarily positive, such that

(1)
$$\frac{1}{r(x_i)} = f(x_i)$$
 $i = 1, 2, ..., p$

and

(2)
$$\frac{1}{r(x_i)} = \frac{m}{2}$$
 $i = p + 1, p + 2, ..., k.$

We may choose L > 0 so large that r(x) + Lq(x) > 0 for $x \in X$. Define $\langle 1/r_k \rangle$ by $r_k(x) = r(x) + kLq(x)$. Clearly $r_k(x) > 0$ for $x \in X, k = 1, 2, ..., .$ Note that $r_k \in \Pi_n$. Now choose $\delta > 0$ sufficiently small so that $x \in (x_i - \delta, x_i + \delta) = D_i$ implies $|1/(r(x)) - 1/(r(x_i))| \leq m/4$ for i = p + 1, p + 2, ..., k. Then for $x \in D_i \cap X$,

$$\frac{1}{r(x)+kLq(x)}\leqslant \frac{1}{r(x)}\leqslant \frac{1}{r(x_i)}+\frac{m}{4}=\frac{3m}{4}.$$

Let $F = X \setminus ((\bigcup_{i=p+1}^{k} D_i) \cup J_1)$. Since all the points in J_1 are isolated, F is compact and $\langle 1/r_k \rangle$ converges monotonically and pointwise to zero on F. By Dini's theorem the convergence is uniform so for a k sufficiently large we have

(1)
$$\frac{1}{r_k(x)} = f(x)$$
 if $x \in J_1$,

(2)
$$\frac{1}{r_k(x)} \leq \frac{3m}{4}$$
 if $x \in F$,

(3)
$$\frac{1}{r_k(x)} \leqslant \frac{3m}{4}$$
 if $x \in \bigcup_{i=p+1}^k D_i$,
(4) $\frac{1}{r_k(x)} \ge \epsilon$ on X for some sufficiently small $\epsilon > 0$.

Then $|| 1/r_k - f|| < m$, contradicting the observation that $\rho \ge m$. Hence $\langle || p_k || \rangle$ is bounded and existence is shown as in theorem 1.

We note that the condition f > 0 on X cannot be removed (see [5, p. 130]).

References

- 1. D. BRINK AND G. D. TAYLOR, Chebyshev approximation by recriprocals of polynomials on $[0, \infty)$, J. Approximation Theory 16 (1976), 142–149.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 3. D. J. LEEMING AND G. D. TAYLOR, Approximation with reciprocals of polynomials on compact sets, J. Approximation Theory 21 (1977), 269–280.
- 4. J. R. RICE, The Approximation of Functions, Vol. 2: Nonlinear and Multivariate Theory," Addison-Wesley, Reading, Mass., 1969.
- 5. T. J. RIVLIN, "An Introduction to the Approximation of Functions," Blaisdell, Waltham, Mass., 1969.